MATH SOLVE

2 months ago

Q:
# How to do this help please

Accepted Solution

A:

Answer:y = - [tex]\frac{8}{15}[/tex] x + [tex]\frac{289}{15}[/tex]Step-by-step explanation:The angle between the tangent and the radius at point P is 90°Calculate the slope of the radius m using the slope formulam = (y₂ - y₁ ) / (x₂ - x₂ - x₁ )with (x₁, y₁ ) = (0, 0) and (x₂, y₂ ) = (8, 15)m = [tex]\frac{15-0}{8-0}[/tex] = [tex]\frac{15}{8}[/tex]Given a line with slope m then the slope of a line perpendicular to it is[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{\frac{15}{8} }[/tex] = - [tex]\frac{8}{15}[/tex], thusy = - [tex]\frac{8}{15}[/tex] x + b ← is the partial equationTo find b substitute (8, 15) into the partial equation15 = - [tex]\frac{64}{15}[/tex] + b ⇒ b = 15 + [tex]\frac{64}{15}[/tex] = [tex]\frac{289}{15}[/tex]y = - [tex]\frac{8}{15}[/tex] x + [tex]\frac{289}{15}[/tex] ← equation of tangent